用指针处理C语言中不定数目的函数参数

类别:VC语言 点击:0 评论:0 推荐:

用指针处理C语言中不定数目的函数参数

[email protected]

现在我们每编一个程序几乎都会用到两个函数-printf和scanf。发现这两个函数和普通函数的不同之处了吗?那就是这两个函数都可以处理不定数目的实参。C语言是一种很宽松的语言,它甚至允许程序员对函数传递任意数目的参数。而这个特性在某些情况下是非常有用的。比如,现在我们要编一个求一系列整数平均值的函数average(),如果不用变长度实参,可能需要定义以下一系列原型:

         int  average_1  (  int  );

         int  average_2  (  int,  int  );

         int  average_3  (  int,  int,  int  );

         …

虽然C++的重载功能可以使这些函数变成同名的,但是编码的工作量会变得很大,而且程序会变得没有美感,况且这种类型的函数有无穷多种,怎么定义得过来呢?现在,我们用变长度实参,可以只写一个函数,就能处理所有的情况。函数原型如下:

         int  average  (  int,  …  );

注意参数列表中的三个点是符合C语言的语法的,而不是我省略了什么东西。这三个点出现在函数形式参数列表的最后,表示这以后可以向函数传递任意数目的实参。例如,函数scanf的声明如下:

int __cdecl scanf (const char *format,…);

注:__cdecl声明的是参数传递模式,因为__cdecl是默认的,因此可以省略.

注意,三个点必须出现在参数列表的最后,而且前面必须要定义至少一个的形式参数。现在我们可以通过函数调用average(0,1,2,3,4,5,-1);来求0到5的平均值了(最后一个-1是结束标志,不参与求值运算,这一点在后面会讲到)。

现在的问题是,虽然我们顺利地声明了函数原型,并且也顺利地调用了函数,但是怎样在函数中接受这些参数呢?不幸的是C语言本身并没有提供像声明参数那样简单的接受参数的机制,显然,我们不可能只用一个省略号来接受这些参数。但是我们可以用指针来解决这个问题(用嵌入式汇编也可以解决这个问题,但是那超出了C语言的范畴)。先让我们来看一下C语言函数传递参数的机制。

C语言中的函数一般①是通过把参数拷贝到一块特殊的内存区域(称为堆栈)内传递给函数的。比如,函数调用

scanf( “%d %f %c %C %s %S”, &i, &fp, &c, &wc, s, ws );

它的参数在内存中的样子是:

地址

参数

……

……

0x0012f308

format

0x0012f30c

&i

0x0012f310

&fp

0x0012f314

&c

0x0012f318

&wc

0x0012f31c

S

0x0012f320

ws

……

……

(*)format是一个指向字符串“%d %f %c %C %s %S”的指针

注:这里讨论的情况只对c语言默认的参数传递模式__cdecl成立,而不适用于__fastcall和__stdcall两种模式.现在我们在写的函数全都是__cdecl模式的。

而format的地址我们可以用&format得到,所以以后各个参数的地址就可以通过增加指针&format的值来得到了。例如,&c的地址是p=(char**)((char*)&format+sizeof(char**)+sizeof(int**)+sizeof(float**))/*这个式子够烦的:-)*/,而&c的值就是*p了。因为C语言没有提供关于参数数目的信息,所以这个信息要有程序员传递一个参数来实现。“%d %f %c %C %s %S”就是告诉scanf,它后面还有六个各种类型的指针作为参数。上面对函数average传递的最后一个参数-1也是用来作为结束标志的。

说到这儿,有一个问题我们不得不提,就是我们又一次遇到了对齐(alignment)问题。所谓对齐,对Intel80x86机器来说就是要求每个变量的地址都是sizeof(int)的倍数。在32位(4字节)机器上表现为所有的变量地址都能被4整除。这样,变量在内存中就不一定是紧密排列的了。例如,下面的函数:

int  Bad_Example  (  char  c,  int  i  );

 

如果参数c的地址是0x0012f308的话,i的地址就不是0x0012f309,而是被移到了0x0012f30c。一般的,如果参数type p1的地址是&p1的话,那么它的后继参数的地址可以通过在他后面加上一个偏移

( char * ) & p1 + ( sizeof ( type ) + sizeof( int ) –1 ) /sizeof ( int ) * sizeof ( int )

得到。(注意,在加的时侯一定要先把&p1的类型转化为(char*)。)

在头文件<stdarg.h>中定义了宏—INTSIZEOF()来得到这个偏移值:

#define _INTSIZEOF(n)   ( (sizeof(n) + sizeof(int) - 1) & ~(sizeof(int) - 1) )

这里为了加快运算用了位操作,但功能是一样的。现在,假设这个宏已经定义了,我们来实现average函数作为一个例子:

int average ( int n, ... )

{

    int sum = 0, c = 0;

    int *p = &n;

    if ( n < 0 ) return 0;

    while ( *p >= 0 )

    {

            sum += *p;

            c++;

            ( char * ) p += _INTSIZEOF(int);

    };

    return sum/c;

}

由于这种操作具有通用性,所以ANSI C提供了三个宏来实现这种处理。这组宏定义在头文件<stdarg.h>中。

type va_arg ( va_list arg_ptr, type );

void va_end( va_list arg_ptr );

void va_start( va_list arg_ptr, prev_param );

操作方法如下:

先定义一个va_list类型的变量,然后用宏va_start给他赋初值,prev_param用省略号前的参数名代替。然后用宏va_arg来挨个取得参数的值,参数的类型在type中指定。最后用宏va_end释放变量。

下面是函数average的另一种实现方式:

int average ( int n, ... )

{

    int sum = n, count = 1, p;

    va_list arg_ptr;

    if ( n < 0 ) return 0;

    va_start( arg_ptr, n );

    while( ( p = va_arg( arg_ptr, int ) ) >= 0 )

    {

           sum += p;

            count++;

    }

    va_end( arg_ptr );

    return sum/count;

}

最后还需要说明两点。首先,上面讲的内容与C语言的实现有关,而C语言的实现又依赖于cpu和操作系统,所以并不适用于所有的计算机,而且随机器的不同会由很大的区别。在<stdarg.h>内会看到大量的条件编译就是这个原因。其次,虽然函数定义中使用可变参数列表提供了很大的灵活性,但是对可变部分的参数C语言编译器不会进行类型检查,所以程序中要特别小心,确保参数的传递和接受是正确的。

 

注:

① C语言中还有一种参数传递方式称为__fastcall方式。这种方式是通过尽量把参数放入寄存器内来传递的(因为寄存器数目有限,用完后剩下的参数只能放入内存了),所以用这种方式传递参数会提高程序的效率。

本文地址:http://com.8s8s.com/it/it2668.htm