摘自:http://blog.csdn.net/newsuppy/archive/2004/08/29/88092.aspx
Blitz++与MTL都是基于C++ template高效数值计算程序库,不过他们专注于不同的方向。
Blitz++提供了一个N维(1—10)的Array类,这个Array类以reference counting技术实现,支持任意的存储序(row-major的C-style数组,column-major的Fortran-style数组),数组的切割(slicing),子数组的提取(subarray),灵活的Array相关表达式处理。另外提供了可以产生不同分布的随机数(F,Beta,Chi-Square,正态,均匀分布等)的类也是很有特色的。
MTL专注于线性代数相关的计算任务,如各种形式矩阵的生成(对角,共轭,稀疏,对称等),相关的计算,变换,以及与一维向量的运算。
两个程序库对于从Matlab导入导出数据都有不错的支持。
本文主要介绍如何在Visual C++7.1编译器下运用这两个程序库。
以前的VC6编译器由于对ISO C++98标准的支持不够,特别是在template方面,以至于很难编译这种完全用template技术构造起来的程序库。Blitz++是完全不支持VC6的。
到了VC7.1,由于对于ISO标准的支持达到了98%,使得我们可以很轻松的编译使用这两个程序库。
不过这两个程序库的文档不是那么友好,特别是MTL,仅仅提供了类似于 reference的文档,对于具体的使用方法则不作介绍。Blitz++相对来说好一些,还提供一份介绍性的入门文档 。所以使用这两个程序库阅读其源代码往往是必要的。当然了,两个程序库都是template代码,源代码必定是全开放的。
先来介绍一下配置吧 。
1, Blitz++, 目前最高版本是0.7,Blitz++已经成为SourceForge的项目了,所以可以在SourceForge.net下载到。下载后解压缩,你会看到\Blitz++-0.7\blitz和\Blitz++-0.7\random两个文件夹,这是 blitz的源代码所在处。\Blitz++-0.7\manual是文档所在文件夹。\Blitz++-0.7\benchmarks,\Blitz++-0.7\examples和\Blitz++-0.7\testsuite中都有很多好的使用实例可供参考。
现在将VC++的 IDE的Include设置为\Blitz++-0.7,因为 blitz源码中都有这样形式的#include ,#include 。或者就干脆把两个源码文件夹整个得copy到include文件夹内。然后将blitz文件夹下的config.h改为其它名字,而将config-VS.NET2003.h的名字改为 config.h。OK,现在你就可以编译所有的 testsuite和benchmarks了。
1, MTL的配置相对来说麻烦一点,现在http://www.osl.iu.edu/research/mtl/这里下载一个VC++7的,不过还不能马上用。由于VC++7.1对标准的支持更近了一步,同时对于某些语法细节的检查更为严格(主要是对于typename和template partial specialization),我们要对代码做一些小小地修改,特别是mtl/mtl_config.h这个文件。有一些地方要加入typename。另外有两个模板偏特化的情况需要修改,加上template <>。在这里http://newsuppy.go.nease.net/mtl.zip 我提供了一个修改完成的版本,不过我不保证我的修改可能引入的新的bugs,所以请谨慎使用。MTL的内部使用一定数量的STL组件和算法。MTL的源代码都在mtl文件夹内,由于mtl内部的include 都是#include “…”的形式,使用时把mtl文件夹复制到当前project下就可以。如果要设VC++的Include 目录,则应该先把所有的#include “…”改为#include <…>这样的形式。
不过刚开始使用MTL还是有一些不太容易让人接受的地方。比如mtl::matrix这个模板类并不能够产生实际的矩阵对象,而要通过它的type成员产生一个对应模板参数的类型,再通过这个类型来实例化对象。
比如typedef mtl::matrix, rectangle<>, dense<>, row_major >::type Matrix; Matrix A;
这里的A才是真正的矩阵对象,而Matrix则是一个元素为float,矩形,密集,行主(C-style)的矩阵类。
下面我提供三个简单的入门例子解释MTL的使用。分别有矩阵的加法,乘法,转置,求逆以及一个线性方程组求解的例子。
另外mtl的test和contrib文件夹下也有很多不错的示例代码可以查阅。
MTL使用示例1,矩阵的加法,乘法和转置。
#include
#include
#include "mtl/mtl.h"
#include
using namespace std;
using namespace mtl;
template <class Matrix>
void print_matrix(Matrix& mat, const string& description)
{
std::cout << description;
std::cout << '[';
for (Matrix::iterator i = mat.begin(); i!=mat.end(); ++i)
{
for (Matrix::OneD::iterator j = (*i).begin(); j!=(*i).end(); ++j)
{
std::cout << '\t' << *j;
}
std::cout << ((i+1 == mat.end()) ? "\t]\n" : "\n");
}
}
int main(int argc, char* argv[])
{
typedef matrix<float, rectangle<>, dense<>, row_major>::type Matrix;
const Matrix::size_type MAX_ROW = 3, MAX_COL = 3;
Matrix A(MAX_ROW,MAX_COL),B(MAX_ROW,MAX_COL),C(MAX_ROW,MAX_COL);
// fill Matrix A with the index syntax
for (Matrix::size_type i=0; i<MAX_ROW; ++i)
{
for (Matrix::size_type j=0; j<MAX_COL; ++j)
{
A(i, j) = Matrix::value_type(rand() % 50);
}
}
// fill Matrix B with the iterator syntax
for (Matrix::iterator i=B.begin(); i!=B.end(); ++i)
{
for (Matrix::OneD::iterator j=(*i).begin(); j!=(*i).end(); ++j)
{
*j = Matrix::value_type(rand() % 50);
}
}
print_matrix(A, "A=\n");
print_matrix(B, "B=\n");
// Matrix C = A + B
add(A, C);
add(B,C);
print_matrix(C, "C = A + B \n");
// Matrix C = A * B^T, B^T: transpose of B
transpose(B);
print_matrix(B, "B^T=\n");
zero_matrix(C); // because mult(A, B, C): C += A*B
mult(A,B,C);
print_matrix(C, "C = A * B^T\n");
return 0;
}
2,下面是一个线性方程组的解法
#include
#include
#include
#include "mtl/mtl.h"
#include "mtl/lu.h"
#include
using namespace std;
using namespace mtl;
int main(int argc, char* argv[])
{
typedef matrix<float, rectangle<>, dense<external>, row_major>::type Matrix;
// dense : data copy from a float array,not generate them with yourself
const Matrix::size_type MAX_ROW = 3, MAX_COL = 3;
// solve the equation Ax=b
// { 4x - y + z = 7
// 4x - 8y + z= -21
// -2x + y + 5z = 15 }
// A = [ 4 -1 1
// 4 -8 1
// -2 1 5 ]
// b = [7 - 21 15]^T
float a[] = {4.0f, -1.0f, 1.0f, 4.0f, -8.0f, 1.0f, -2.0f, 1.0f, 5.0f};
Matrix A(a, MAX_ROW, MAX_COL);
typedef matrix<float, rectangle<>, dense<>, row_major>::type LUMatrix;
LUMatrix LU(A.nrows(), A.ncols());
mtl::copy(A, LU);
typedef dense1D<float> Vector;
Vector pvector(A.nrows());
lu_factor(LU, pvector);
Vector b(A.nrows()), x(A.nrows());
b[0] = 7.0f, b[1] = -21.0f, b[2] = 15.0f;
lu_solve(LU, pvector, b, x);
for (Vector::iterator i=x.begin(); i!=x.end(); ++i)
cout << *i << '\t';
system("pause");
return 0;
}
3,矩阵求逆
#include
#include
#include
#include "mtl/mtl.h"
#include "mtl/lu.h"
#include
using namespace std;
using namespace mtl;
template <class Matrix>
void print_matrix(Matrix& mat, const string& description)
{
std::cout << description;
std::cout << '[';
for (Matrix::iterator i = mat.begin(); i!=mat.end(); ++i)
{
for (Matrix::OneD::iterator j = (*i).begin(); j!=(*i).end(); ++j)
{
std::cout << '\t' << *j;
}
std::cout << ((i+1 == mat.end()) ? "\t]\n" : "\n");
}
}
int main(int argc, char* argv[])
{
typedef matrix<float, rectangle<>, dense<external>, row_major>::type Matrix;
// dense : data copy from a float array,not generate them with yourself
const Matrix::size_type MAX_ROW = 3, MAX_COL = 3;
// inverse matrix A
// A = [ 4 -1 1
// 4 -8 1
// -2 1 5 ]
float a[] = {4.0f, -1.0f, 1.0f, 4.0f, -8.0f, 1.0f, -2.0f, 1.0f, 5.0f};
Matrix A(a, MAX_ROW, MAX_COL);
typedef matrix<float, rectangle<>, dense<>, row_major>::type CMatrix;
CMatrix LU(A.nrows(), A.ncols());
mtl::copy(A, LU);
typedef dense1D<float> Vector;
Vector pvector(A.nrows());
lu_factor(LU, pvector);
CMatrix InvA(A.nrows(), A.ncols());
lu_inverse(LU, pvector, InvA);
print_matrix(A, "A = \n");
print_matrix(InvA, "A^(-1) = \n");
system("pause");
return 0;
}
参考:1,数值方法(Matlab版) 3rd
John H.Mathews, Kurtis D.Fink著, 陈渝,周璐,钱方 等译
2,Matlab 6.5的文档 The MathWorks, Inc.
本文地址:http://com.8s8s.com/it/it27661.htm