这是我在论坛上回的一个帖子,感觉很有意思就在这里保存下来,以免丢失!
原贴地址: http://community.csdn.net/Expert/topic/3964/3964967.xml?temp=.7246057
提问(我稍加更改):
做一函数,比如
向函数传入一个6函数计算出5行,
每二个一对,一行3对,一行中必须出现{1,2,3,4,5,6};
两行中不能有相同的一对!
向函数传入一个 12 则输出11行等等...
//例:如6则输出这样内容,每组必须无重复
//则函数计算出5行,每行3对,2个一对,无重复的组合
1-2,3-4,5-6
2-4,3-5,1-6
3-2,4-6,1-5
4-5,3-1,2-6
5-2,1-4,3-6
我的解答:
给搂主一个提议:这是我精心为你设计的一个算法,如果有什么不对的地方,给我发消息!
具体算法步骤:
输入num(偶数)时,
用(x,y)模式表示x-y
弄一个邻居表TA,如下是(1,2,3,4,…,i,i+1,…num)的所有二位组合:
p1----> (1,2),(1,3),(1,4)…,(1, num)
p2----> (2,3),(2,4)…(2, num)
p3----> (3,4),…,(3, num)
…
pi---->(i,i+1),…,(i,num)
…
p(num-1)----> (num-1,num)
寻找一组的步骤如下:
初始化:定义集合SA,用来存储已经被包含的x,y,初始化SA={},
注意:未处理(x1,y1):表示(x1,y1)没有被尝试地包含在SA中,所谓尝试,是因为即使被包含进去,也可能被回滚掉!
第1步,取p1中第一个未处理(1,y1),SA ={1,y1};
第2步,如果2在SA中,进入第3步,
否则如果p2存在未处理(2,y2),取p2中第一个未处理(2,y2),SA =SA+{2,y2};
否则如果p2不存在未处理(2,y2),去掉最后加入SA的两个数,然后返回到最后加入元素到SA的那一步;
第3步,如果3在SA中,进入第4步,
否则如果p3存在未处理(3,y3),取p3中第一个未处理(3,y3),SA =SA+{3,y3};
否则如果p3不存在未处理(3,y3),去掉最后加入SA的两个数,然后返回到最后加入元素到SA的那一步;
…
第i步,如果i在SA中,进入第i+1步,
否则如果pi存在未处理(i,yi),取pi中第一个未处理(i,yi),SA =SA+{i,yi};
否则如果pi不存在未处理(i,yi),去掉最后加入SA的两个数,然后返回到最后加入元素到SA的那一步;
…
第num-1步,如果num-1在SA中,进入第num步,
否则如果p(num-1)存在未处理((num-1),y(num-1)),取p(num-1)中第一个未处理((num-1),y(num-1)),SA =SA+{(num-1),y(num-1)};
否则如果p(num-1)不存在未处理((num-1),y(num-1)),去掉最后加入SA的两个数,然后返回到最后加入元素到SA的那一步;
第num步,如果SA还未全包括{1,2,3,4, …,i,i+1,…num},去掉最后加入SA的两个数,然后返回到最后加入元素到SA的那一步;
否则,假设SA={x1,y1,x2,y2,…},则从邻居表中删除(x1,y1),(x2,y2),…;然后到初始化重新开始寻找下一组,直到邻居表中没有元素!
再给你一个例子:
当为6时,
邻居表,
p1----> (1,2),(1,3),(1,4),(1,5),(1,6)
p2----> (2,3),(2,4),(2,5),(2,6)
p3----> (3,4),(3,5),(3,6)
p4----> (4,5),(4,6)
p5----> (5,6)
找第1组过程:
第1步,p1取(1,2),SA={1,2};
第2步, 2在SA中,转下一步;
第3步,p3取 (3,4),SA={1,2,3,4};
第4步,4在SA中,转下一步;
第5步,p5取 (5,6),SA={1,2,3,4,5,6};
第6步,得到第一组(1,2),(3,4),(5,6),
从邻居表中删除(1,2),(3,4),(5,6),邻居表变为
p1----> (1,3),(1,4),(1,5),(1,6)
p2----> (2,3),(2,4),(2,5),(2,6)
p3----> (3,5),(3,6)
p4----> (4,5),(4,6)
找第2组过程:
第1步,p1取(1,3),SA={1,3};
第2步, p2取 (2,4),SA={1,3,2,4};
第3步,3在SA中,转下一步;
第4步,4在SA中,转下一步;
第5步,p5不存在未处理(5,y5),去掉最后加入SA的两个数,SA={1,3};然后返回到最后加入元素到SA的第2步,
第2步, p2取 (2,5),SA={1,3,2,5};
第3步,3在SA中,转下一步;
第4步,p2取 (4,6), SA={1,3,2,5,4,6};
第5步,5在SA中,转下一步
第6步,得到第二组(1,3),(2,5),(4,6),
从邻居表中删除(1,3),(2,5),(4,6),邻居表变为
p1----> (1,4),(1,5),(1,6)
p2----> (2,3),(2,4)(2,6)
p3----> (3,5),(3,6)
p4----> (4,5)
找第3组过程:
…
找第4组过程:
…
找第5组过程:
…
p1----> (1,6)
p2----> (2,3)
p3---->
p4----> (4,5)
可以找到5组为
(1,2),(3,4),(5,6)
(1,3),(2,5),(4,6)
(1,4),(2,6),(3,5)
(1,5),(2,4),(3,6)
(1,6),(2,3),(4,5)
结果正确吧?
本文地址:http://com.8s8s.com/it/it31696.htm